Intact aminoacyl-tRNA is required to trigger GTP hydrolysis by elongation factor Tu on the ribosome.
نویسندگان
چکیده
GTP hydrolysis by elongation factor Tu (EF-Tu) on the ribosome is induced by codon recognition. The mechanism by which a signal is transmitted from the site of codon-anticodon interaction in the decoding center of the 30S ribosomal subunit to the site of EF-Tu binding on the 50S subunit is not known. Here we examine the role of the tRNA in this process. We have used two RNA fragments, one which contains the anticodon and D hairpin domains (ACD oligomer) derived from tRNA(Phe) and the second which comprises the acceptor stem and T hairpin domains derived from tRNA(Ala) (AST oligomer) that aminoacylates with alanine and forms a ternary complex with EF-Tu. GTP. While the ACD oligomer and the ternary complex containing the Ala-AST oligomer interact with the 30S and 50S A site, respectively, no rapid GTP hydrolysis was observed when both were bound simultaneously. The presence of paromomycin, an aminoglycoside antibiotic that binds to the decoding site and stabilizes codon-anticodon interaction in unfavorable coding situations, did not increase the rate of GTP hydrolysis. These results suggest that codon recognition as such is not sufficient for GTPase activation and that an intact tRNA molecule is required for transmitting the signal created by codon recognition to EF-Tu.
منابع مشابه
Ribosome-induced changes in elongation factor Tu conformation control GTP hydrolysis.
In translation, elongation factor Tu (EF-Tu) molecules deliver aminoacyl-tRNAs to the mRNA-programmed ribosome. The GTPase activity of EF-Tu is triggered by ribosome-induced conformational changes of the factor that play a pivotal role in the selection of the cognate aminoacyl-tRNAs. We present a 6.7-A cryo-electron microscopy map of the aminoacyl-tRNA x EF-Tu x GDP x kirromycin-bound Escherich...
متن کاملKirromycin, an inhibitor of protein biosynthesis that acts on elongation factor Tu.
Kirromycin, a new inhibitor of protein synthesis, is shown to interfere with the peptide transfer reaction by acting on elongation factor Tu (EF-Tu). All the reactions associated with this elongation factor are affected. Formation of the EF-Tu.GTP complex is strongly stimulated. Peptide bond formation is prevented only when Phe-tRNA(Phe) is bound enzymatically to ribosomes, presumably because G...
متن کاملCodon-dependent conformational change of elongation factor Tu preceding GTP hydrolysis on the ribosome.
The mechanisms by which elongation factor Tu (EF-Tu) promotes the binding of aminoacyl-tRNA to the A site of the ribosome and, in particular, how GTP hydrolysis by EF-Tu is triggered on the ribosome, are not understood. We report steady-state and time-resolved fluorescence measurements, performed in the Escherichia coli system, in which the interaction of the complex EF-Tu.GTP.Phe-tRNAPhe with ...
متن کاملHydrolysis of GTP on elongation factor Tu.ribosome complexes promoted by 2'(3')-O-L-phenylalanyladenosine.
In the presence of Escherichia coli ribosomes and elongation factor EF) Tu, 2'(3')-O-L-phenylalanyladenosine (AdoPhe), the 3'-terminal portion of Phe-tRNAPhe, promotes the hydrolysis of GTP. The reaction requires the presence of both 30S and 50S ribosomal subunits and of proteins L7/L12 on the 50S subunit, is unaffected by mRNA [poly(uridylic acid)], and is strongly stimulated by EF-Ts. It is p...
متن کاملInitial binding of the elongation factor Tu.GTP.aminoacyl-tRNA complex preceding codon recognition on the ribosome.
The first step in the sequence of interactions between the ribosome and the complex of elongation factor Tu (EF-Tu), GTP, and aminoacyl-tRNA, which eventually leads to A site-bound aminoacyl-tRNA, is the codon-independent formation of an initial complex. We have characterized the initial binding and the resulting complex by time-resolved (stopped-flow) and steady-state fluorescence measurements...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Biochemistry
دوره 39 7 شماره
صفحات -
تاریخ انتشار 2000